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Morphological measures for spatial patterns occuring as dissipative structures in systems driven far from
equilibrium are introduced. They characterize the geometry and topology of the patterns and are capable to
distinguish irregular structures with respect to the morphology. In particular, we analyze turbulent and regular
patterns~Turing patterns! in chemical reaction-diffusion systems observed in a two-dimensional open gel
reactor with a chlorite-iodide-malonic acid reaction. Introducing the concept of level contours, the measures
turn out to be polynomials of low order~cubic and fourth degree! in the grey-scale level of the images. Thus
the dependence on the experimental conditions is reflected only in a finite number of coefficients, which can be
used as order parameters for the morphology of patterns. We observe a symmetry breaking of the polynomials
when the type of the pattern changes from hexagons to turbulence or stripes. Therefore it is possible to describe
the pattern transitions quantitatively and it may be possible to classify them in a similar way like thermody-
namic phase transitions.

PACS number~s!: 47.54.1r, 47.20.Hw, 05.70.Fh

I. INTRODUCTION

Irregular spatial-temporal patterns occur in many systems,
including chemical reaction-diffusion systems@1–6#,
Rayleigh-Benard convection@7,8# electrohydrodynamic con-
vection@9#, and surface waves@10,11#. The usual approaches
to describe and characterize such complex spatial structures
are, for instance, autocorrelation functions or Fourier trans-
formations@1#. Whereas for regular patterns these measures
provide useful information as, for example, about character-
istic length scales and orientational order, they are incapable
of distinguishing irregular structures of different topology.

Especially, they do not provide a description of the mor-
phology of the patterns, i.e., of the content and shape of
spatial structures. As an example, consider the three patterns
shown in Fig. 1. The obvious difference between these pat-
terns does not show up in their characteristic length scales
but in the connectedness of white or black regions and in the
bending or curvature of the stripes. Other features related to
the content and shape of figures embedded in the patterns
are, for instance, the white area or the length of the bound-
aries between black and white regions. Since photographs
reveal such detailed spatial information and since the differ-
ence and the evolution of patterns are mostly recognized in
the change of their shapes, it is important to define quantita-
tive measures for such morphological characteristics. More-
over, the failure of quantities used in the analysis of low-
dimensional chaotic systems, such as generalized dimensions
and Lyapunov exponents, to describe spatial-temporal pat-
terns demands measures quantifying the essential morpho-
logical features like the connectedness of spatial regions and
the curvature of their boundaries.

Apart from singular patterns extended phase-diagrams of
spatial structures were observed in the experiments men-
tioned above~see Fig. 10 in Ref.@1#!. Unlike in equilibrium

phase transitions the reproducible transition of one pattern
type into another structure is not well understood. In recent
theoretical studies@12,13# the occurrence of turbulence, i.e.,
the instability of regular stationary patterns, was related to
the occurrence of topological defects, in analogy to phase
transitions in two-dimensional statistical systems. Further-
more, quantitative measures of disorder in regular patterns
were defined@14# and wavelet transforms are introduced to
extract local amplitudes and phases of the pattern in order to
analyze defects@15#. However, none of these approaches to
analyze transitions of spatial patterns are focusing on their
changes in morphology or shapes of connected regions, in
particular, if many defects occur. The wavelet analysis of
two-dimensional patterns is a difficult and nontrivial method
which is often numerically inefficient. Therefore it is useful
to look for a quantitative characterization of the morphology
of spatial patterns which allows a direct and numerically ro-
bust way to analyze experimental data.

In this paper we introduce the Minkowski functionals as
morphological measures for patterns. They are well-known
in image analysis@16#, mathematical morphology@17#, and
integral geometry@18#. A prominent member of this family
of morphological measures is the Euler characteristic de-
scribing the topology, i.e., the connectivity of spatial pat-
terns.

Although this approach is generally useful for dissipative
structures in nonequilibrium systems, we study in this paper
solely concentration patterns obtained in a chemical reaction,
where the structures emerge out of the coupling of reaction
dynamics and diffusion. The occurrence of stationary spatial
patterns in chemical reaction-diffusion systems was already
predicted by Turing@19# and was extensively investigated
since then by theoretical and numerical studies@20#. The first
experimental observation of stationary patterns in a gel reac-
tor was in 1990@3–5#.

We consider Turing-type chemical spatial patterns in a
two-dimensional open spatial reactor with a chlorite-iodide-
malonic acid reaction. The experiments are described in de-
tail in Ref. @1#. The patterns form in a thin, quasi-two-
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dimensional disk filled with polyacrylamide gel which
prevents convection but allows for the diffusion of chemi-
cals. Depending on the concentration of iodide I3

2 the sys-
tem changes in color from yellow to blue which is measured
in digitized grey-scale images. Above critical values of the
control parameters, i.e., temperature and reagent concentra-
tions, spatial patterns spontaneously emerge from a spatially
homogeneous system. Three different types of patterns are
reported in Ref.@1#, a hexagonal structure of isolated dots, a
lamellar stripe structure broken up into domains of different
orientations, and a structure of turbulent stripes, which

change shape and orientation much faster than the usual
moving of grain boundaries.

In the next section we introduce for these spatial patterns
the concept of level contours and define the Minkowski func-
tionals as morphological measures before we describe in the
following section the results for the reported Turing patterns.

II. LEVEL CONTOURS AND MINKOWSKI MEASURES

We show in Fig. 1 examples of the three different types of
chemical patterns observed in Ref.@1#, a hexagonal state~a!,

FIG. 1. Three types of chemical patterns were observed in Ref.
@1#, a hexagonal state~a!, a lamellar stripe structure~b!, and a
turbulent pattern~c!. The grey tones of the image correspond to the
concentration of iodide I3

2 . Each images consists of a 5123480
array of pixels with 256 grey levels.

FIG. 2. Three black-and-white images derived from the turbu-
lent pattern shown in Fig. 1~c! at three different grey levels
r560, 127, and 180. The image is white, where the grey level in
Fig. 1~c! is higher thanr. One can see clearly the different topolo-
gies of the images. At the thresholdr5127 the black and white
components are highly connected, whereas atr560 (r5180)
many disconnected black~white! components occur.
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a lamellar stripe structure~b!, and a turbulent pattern~c!. The
grey tones of the image correspond to the amount of the
oxidized state in the system, i.e., inversely proportional to
the concentration of iodide I3

2 . Each image consists of a
5123480 array of pixels with 256 grey levels.

In order to get detailed information about the spatial
structure we want to look at the system at each grey level,
i.e., we consider the so-called level contours. Thus we intro-
duce a threshold variabler50, . . .,255 andreset the grey
value at each pixel to either white or black depending on
whether the original value is larger or lower thanr, respec-
tively. In this way we get 256 black-and-white images out of
one grey-level image. In Fig. 2 we show three of them de-
rived from the turbulent image shown in Fig. 1~c! at the
levels r560, 127, and 180. The qualitative features of the
images varies drastically when the threshold parameterr is
changed.

Although the pictures in Fig. 2 are obviously descriptions
of continuous patterns, i.e., describable by smooth boundary
lines between black and white areas, they actually consist of
a square lattice of pixels shown in Fig. 3. Thus each pixel has
exactly four nearest neighbor pixels along the sides of the
unit squares of the lattice and also four next-nearest neigh-
bors connecting the diagonals of the unit squares. In order to
avoid a somewhat arbitrary definition of continuous bound-
ary lines on a large scale we want to introduce geometric
measures right on the well-defined pixel level, which never-
theless describe the morphological differences of these dis-
crete images in a continuous way. For this purpose we use
Minkowski measures, well known in digital picture analysis
@16# and integral geometry@17# for the characterization of
black-and-white discrete images. Integral geometry general-
izes curvature integrals over smooth surfaces to the case of
surfaces with edges and corners. In the example of a two-
dimensional digital picture such irregularities arise from the
corners of the pixels, which make the Minkowski measures

the natural choice for the description of the geometry, or
morphology, of digital pictures. These measures have already
been applied in other physical systems where spatial patterns
play an important role, e.g., for the description of micro-

FIG. 4. The Minkowski measures, i.e.~a! the area fractionv, ~b!
the boundary lengths, and~c! the Euler characteristicx, are shown
for three typical patterns, a hexagonal state~full lines!, a lamellar
stripe structure~dashed!, and a turbulent pattern~dash-dotted!. ~a!
The area of the white region, i.e., the number of pixels with thresh-
old larger thanr, decreases monotonously from 1 to 0. In contrast
to the stripe and turbulent pattern, which both show a nearly point-
symmetric behavior with respect tor5127 andv50.5, the hex-
agonal structure favors black areas. This can already be seen in the
grey-scale image shown in Fig. 1~c!. ~b! The boundary length tends
to zero for a nearly white (r50) and black (r5255) image and
reaches a maximum inbetween. Again the hexagonal pattern exhib-
its an asymmetry inr with a maximum of the boundary length at
smaller values of the thresholdr than for the stripe and turbulent
structure with a maximum nearr5127.~c! The Euler characteristic
x describes the topological structure of the pattern. It is negative
~positive! if many disconnected black~white! components dominate
the image. A vanishing Euler characteristic indicates a highly con-
nected structure with equal amount of black and white components
as it can be seen in Fig. 2.

FIG. 3. A black-and-white digital image consists of a square
lattice where each square has exactly four nearest and next-nearest
neighbors. By counting the number of white squares one obtains for
the area fractionv5

13
42. The boundary lengths5

4
7 between the

black and white regions is given by the number of sides joined by a
black and white pixel. The number of connected black and white
components in both cases one (Nr

(b)5Nr
(w)51), since the surround-

ing white region does conventionally not count. The Euler charac-
teristic is therefore zero (x50), a result which can also be obtained
by counting the local curvature variables located at the boundaries.
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emulsions@21,22#, the large scale distribution of galaxies in
the Universe@23#, and percolation in porous media@24#.

One obvious quantity describing the morphological differ-
ences of the images shown in Fig. 2 is the white area, i.e., the
number of pixelsNr with a grey level larger thanr. Nor-
malized by the total number of pixelN the area fraction
v(r)5Nr /N decreases from 1 to 0 by increasing the thresh-
old, which is shown in Fig. 4~a! for three typical patterns
reported by Ref.@1#, i.e., for a hexagonal state~full lines!, a
lamellar stripe structure~dashed!, and a turbulent pattern
~dashed-dotted!.

Another morphological quantity shown in Fig. 4~b! is the
length of the boundary lines(r)5Br /N between black and
white regions measured as the number of pairs of neighbored
black and white pixelsBr normalized by the total number of
pixelsN. As expected, the boundary lengths starts at zero
for the totally white image atr50, increases, reaches a
maximum value where the black and white areas are nearly
equal, decreases, and finally ends at zero again for the com-
plete black image atr5255.

The third quantity shown in Fig. 4~c! is the so-called Eu-
ler characteristicx(r)5(Nr

(w)2Nr
(b))/N, i.e., the difference

of the number of blackNr
(b) and whiteNr

(w) components
normalized byN. A black or white component is defined as
a region of connected black or white pixels, respectively.
Thereby a black pixel is connected to another black one iff
one can find a path of black pixels going in each step from
one pixel to one of its four nearest neighbors. Due to the
square-lattice structure of the pixels the definition for white
components is slightly different. A white pixel is connected
to another white one iff one can find a path of white pixels
going in each step from one pixel to one of its four nearest
neighbors or to one of its four next-nearest neighbors. Thus
diagonal steps are allowed. We want to note that for the
pictures considered here this difference plays no role, since
always a path could be found avoiding diagonal steps.

In contrast to the surface areav and the line lengths the
Euler characteristicx describes the pattern in a purely topo-
logical way, i.e., without refering to any kind of metric. It
measures the connectivity of the black and white regions.
Despite this global characterization of the pattern the Euler
characteristic can be calculated in a local way. Consider, for
example, one of the four corners of a black pixel and its three
neighboring pixels joining at this corner as it is shown in Fig.
3. We design at each corner of a black pixel the values
21, 0, or11 depending on the ‘‘local curvature.’’According
to Fig. 3 the curvature value is21 iff both of the two nearest
neighbors joining at the corner are white, it is11 iff both of
the two nearest neighbors joining at the corner are black and
the third, next-nearest one is white, and it is 0 for all other
cases. The sum of all these curvature values divided by 4N
equals the Euler characteristicx. It can be shown that this
definition of x possesses a continuum limit for smooth
boundaries, which is equal to the integral of the curvature
along the boundary lines. Thusx/s describes the mean cur-
vature of the boundary between black and white domaines.
As one can see in Fig. 2~a! at low thresholds many discon-
nected black components dominate the structure of the image
yielding a negative Euler characteristic in accordance with
the functionx shown in Fig. 4~c!. This measure indicates a

negative mean curvature counting curvatures at boundaries
negative, if the boundary curve is bended towards the black
region as described above. On the other end at high thresh-
olds one observes in Fig. 2~c! an inverted image with many
disconnected white components, thus a positive mean curva-
ture, and therefore a positive Euler characteristic. In be-
tween, at intermediate thresholdsr highly connected and in-
tertwined black and white stripes occur, where the mean
curvature is almost zero and the number of black and white
components is balanced. The areav, the boundary length
s, and the Euler characteristicx are called the Minkowski
measures for two-dimensional patterns.

III. RESULTS FOR TURING PATTERNS

In order to apply the Minkowski measures to Turing pat-
terns generated by a diffusion-reaction system we calculate
for each thresholdr and each pattern reported in Ref.@1# the
white areav, the lengths of the boundaries, and the integral
of the curvature along the boundaries, i.e., the Euler charac-
teristic x. Especially we analyzed each pattern indicated by
the ‘‘phase-diagram’’ in Fig. 10 of Ref.@1# to study transi-
tions of patterns.

Surprisingly, it turns out that there are simple combina-
tions of the quantitiesv(r), s(r), andx(r), namely,

pv~r!5tanh21~2v21!,

ps~r!5
s

v~12v !
54s cosh2@pv~r!#, ~1!

and

px~r!5
x

s
,

such that the experimental data~considered as functions of
the thresholdr, which is normalized to the interval@21,1#
for convenience! may be describe quite well by polynomials
of very low degree, i.e.,

pv~r!'pv
~0!1pv

~1!r1pv
~2!r21pv

~3!r3,

ps~r!'ps
~0!1ps

~1!r1ps
~2!r21ps

~3!r31ps
~4!r4, ~2!

and

px~r!'px
~0!1px

~1!r1px
~2!r21px

~3!r3,

which approximate the functionspv(r), pv(r), and pv(r)
very accurate. This holds for all the patterns reported in Ref.
@1#. That is, these spatial combinations ofv, s, andx may be
described by a few parameters for different patterns and are
thus in this sense universal in character.

In Fig. 5 we show for the same patterns used for Fig. 4,
i.e., for a hexagonal state~full lines!, a lamellar stripe struc-
ture ~dashed!, and a turbulent pattern~dashed-dotted!, the
three quantities~a! pv(r), ~b! ps(r), and~c! px(r) as func-
tions of the thresholdr. The thin full line in Fig. 5 is the best
fit to the functions, which can hardly be distinguished from
the experimental data.
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The coefficients for the polynomials shown in Fig. 5 are
given in Table I to illustrate typical values. It was not pos-
sible to fit the data curves with polynomials of lower orders
than the one used in the ansatz. Higher orders were not nec-
essary to improve the accuracy. The coefficientspm

( i )

( i51, . . . ,4, m5v,s,x) depend on the control parameters
as, for instance, the concentration of malonic acid or the
temperature, but they are reproducible by unchanged experi-
mental conditions. Moreover, the fits are not only satisfying
with sufficient accuracy at intermediate thresholds near zero
but also at the very ends, where only few isolated compo-
nents remain in the images.

Whereas the functions seems to be symmetric in the
thresholdr for stripe and turbulent patterns, the functions
display a dominance of black regions for hexagonal patterns.
The symmetry observed in Fig. 5 is reflected by the coeffi-
cientspv

(0) , pv
(2) , ps

(1) , ps
(3) , px

(0) , andpx
(0) , which are for

stripes and turbulent patterns, but not for the hexagons, at
least a magnitude smaller than the dominant terms.

Nevertheless for the hexagon patterns the values of the
functions at the very ends, atr51 and r521, show the
same symmetric relations, i.e.,pv(21)'2pv(1),
ps(21)'ps(1), and px(21)'2px(1). Thus the coeffi-
cients of the polynomials obey approximatelypv

(0)'2pv
(2) ,

ps
(1)'2ps

(3) , and px
(0)'2px

(2) , as one can see in Table I.
Moreover, we found that the valuepv(21)52pv(1)'2.5
is not influenced by control parameters like the malonic acid
concentration~see Fig. 5!.

The first result of this integral geometric method for pat-
tern analysis is that the areav of the white domains as a
function of the thresholdr is given mainly by a hyperbolic
tangent profile and that the boundary lengths is proportional
to the productv(12v), i.e., to the product of the areas of
black and white components, respectively. The particular
functional forms in Eq.~1! are chosen because of the occur-
rence of these functions in many fields of physics. But the
connection to the reaction-diffusion system considered here
is not clear and needs to be investigated. Although we find
these functional forms for all of the chemical patterns re-
ported in Ref.@1#, we could not see them in patterns gener-
ated by other chemical reactions or by computer simulation.

The second, even more important result is that the depen-
dence on the experimental conditions like the concentration
of malonic acid is reflected only in a finite number of coef-
ficientspm

( i ) . The functional form of the measuresv, s, and
x remains the same, i.e., it is given always by polynomials of
low order.

The third and most striking result can be seen when the
dependence of the coefficients on the control parameters is
considered. We show, for instance, in Fig. 6 for seven differ-
ent concentrations @H2SO4] 0

B ~mM! at constant
@ClO2

2#0
A520 mM the experimental curvepx(r) and its best

fit using a cubic polynomial. The other control parameters
were fixed at the values given for Fig. 10 of Ref.@1#. The
shape of the polynomialpx(r) indicates a transition from
hexagonal point patterns„full lines at @H2SO4#0

B517, 28, 45,
and 100~mM!… to turbulent structures„dash-dotted lines at
@H2 SO4#0

B52, 5, 10 ~mM!…. For all turbulent patterns the
polynomial is nearly a straight line with no constant, qua-
dratic, or cubic term and shows therefore a zero atr50. In

contrast, for the hexagons these terms cannot be neglected.
Especially the quadratic term yields an asymmetry in the
functional form of the thresholdr. The similarity to the sym-
metry breaking mechanism at thermodynamic phase transi-
tions is obvious, although the physical connection is not
made yet. The transition seems to be continuous with
steadily decreasing cubic and quadratic terms in the polyno-
mial. They remain almost zero for the turbulent patterns de-
spite the change of the control parameters. The inset shows
the coefficientpx

(0) of the polynomialpx(r), i.e., its value at
r50, as a function of the concentration@H2SO4#0

B ~mM!. At
each concentration six different patterns were analyzed. This
measure reflects the asymmetry in the thresholdr of the
polynomials and is therefore almost zero as long as the pat-
tern is turbulent and it increases when hexagonal structures

FIG. 5. The same patterns as in Fig. 4, a hexagonal state~full
lines!, a lamellar stripe structure~dashed!, and a turbulent pattern
~dash-dotted!, are used to illustrate the functional form of the
Minkowski measures, i.e., of ~a! the area fraction
pv(r)5 tanh21(2v21), ~b! the boundary length ps(r)
5s/v(12v), and ~c! the Euler characteristicpx(r)5x/s. The
lines are best fits to the experimental data~black dots! using cubic
and fourth-degree polynomials. The accuracy is remarkable and
could not be achieved with polynomials of lower orders. The asym-
metry of the measures for the hexagonal pattern, which can be seen
in Fig. 4, are reflected by quadratic terms in the polynomials.
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emerge. We find a pattern transition from turbulent stripes to
hexagons at a concentration of 17 mM compared with 45
mM indicated by the phase diagram in Fig. 10 of Ref.@1#.

In Fig. 7 we show for five different concentrations of
malonic acid@CH2~COOH)2] 0

B ~mM! the experimental curve
px(r) and its best fit using a cubic polynomial. The other
control parameters were held fixed at the values given for
Fig. 7 of Ref.@1#. The shape of the polynomialpx(r) reflects
clearly the transition from stripe patterns„full lines at
@CH2~COOH)2] 0

B511,12 ~mM!… to turbulent structures
„dash-dotted lines at@CH2~COOH)2] 0

B58,9,10 ~mM!…. For
all turbulent patterns the polynomial is nearly a straight line,
in particular without cubic term. But for the stripes the cubic
cooefficient is not small compared to the linear term. In con-
trast to the hexagons, where the quadratic term dominates the

shape of the curve, it remains zero for stripe patterns ana-
lyzed here.

The insets show the coefficientspx
(1) and px

(3) , respec-
tively, as a function of the malonic acid concentration
@CH2~COOH)2] 0

B ~mM!. Again at each concentration six dif-
ferent patterns were analyzed. The deviation of the values at
12 mM from the ones at 11 mM might result from an insuf-
ficient relaxation time for the pattern to relax into its final
state@25#. However, we observe a symmetry breaking in the
polynomial when the type of pattern changes. The discon-
tinuous pattern transition with a sharp jump from a turbulent
state to stripes occurs at a concentration of 10 mM in agree-
ment with the quantities shown in Fig. 8 of Ref.@1#.

IV. CONCLUSION

Relating to our three main findings we want to focus on
three questions.

FIG. 6. The polynomialpx(r) indicates a transition from
hexagonal point patterns~full lines! to turbulent structures
~dash-dotted! as a function of @H2SO4#0

B ~mM! at constant
@ClO2

2#0
A520 mM. The other control parameters were held fixed at

the values given for Fig. 10 of Ref.@1#. The transition seems to be
continuous with decreasing cubic and quadratic terms in the poly-
nomial. They remain zero for the turbulent patterns. As in Fig. 5,
the lines are best fits to the experimental data~black dots!. The inset
shows the coefficientpx

(0) of the polynomialpx(r), i.e., its value at
r50, as a function of the concentration@H2SO4#0

B ~mM!. We find a
pattern transition from turbulent stripes to hexagons at a concentra-
tion of 17 mM compared with 45 mM indicated by the phase dia-
gram in Fig. 10 of Ref.@1#.

FIG. 7. The transition from stripe patterns~dashed! to turbulent
structures~dash-dotted! exhibits a jump in the cubic term in the
polynomial px(r) as a function of malonic acid concentration
@CH2(COOH)2#0

B . The other control parameters were held fixed at
the values given for Fig. 7 in Ref.@1#. As in Fig. 5 the lines are best
fits to the experimental data~black dots!. The insets show the co-
efficientspx

(3) andpx
(1) , respectively, as a function of malonic acid

concentration@CH2(COOH)2#0
B . As in Fig. 6, the cubic term is

zero for the patterns in the turbulent phase but nonzero for the
stripes. In contrast to the hexagon patterns the quadratic term re-
mains small.

TABLE I. Typical values for the coefficientspm
(n) of the polynomialspm(r) for hexagonal, stripe, and

turbulent patterns. Coefficients which are at least a magnitude smaller than the dominant terms are set in
parentheses to illustrate the apparent symmetry of the polynomials.

Pattern typem pm
(0) pm

(1) pm
(2) pm

(3) pm
(4)

Hexagons,v 20.45 21.59 0.397 20.82
Hexagons,s 0.83 0.14 0.43 20.18 0.36
Hexagons,x 0.024 0.056 20.025 0.033
Stripes,v ~0.0096! 21.39 ~0.030! 21.09
Stripes,s 0.55 (20.021! 0.599 ~0.035! (20.062!
Stripes,x (20.00020! 0.024 (20.000013! 0.031
Turbulent,v (20.063! 21.93 ~0.058! 20.536
Turbulent,s 0.697 ~0.019! 0.554 (20.4! (20.023!
Turbulent,x ~0.0026! 0.063 (20.0039! ~0.0044!
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~1! Why is the white area essentially a hyperbolic tangent
profile in the thresholdr? Despite the occurrence of this
profile in such diverse fields as thermal statistics of a para-
magnet, the width of an fluid interface, or the mean field
solution of af4-field theory, the connection to the reaction-
diffusion system is not clear yet.

~2! Why are the measurespv(r), ps(r), andpx(r) finite
order polynomials in the thresholdr? They do not need to be
that. However, in many models for statistical geometries like
the Boolean grain model, similar polynomial behaviors of
the Minkowski functional do occur@24#. But what is the
underlying statistical model in this case, if there is one?

~3! Why is there a symmetry breaking in the mean curva-
ture, i.e., in the Euler characteristic as a measure for the
topology of patterns? Is it possible to formulate a mesoscopic

theory of pattern transitions in analogy to the Landau theory
for thermodynamic phase transitions?

The primary conclusion is that Minkowski measures, in
particular the Euler characteristic, describe quantitatively ir-
regular spatial patterns and their transitions in a morphologi-
cal way and might be capable to classify pattern transitions
in a similar way like thermodynamic phase transitions.
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