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Morphological characterization of patterns in reaction-diffusion systems

K. R. Mecké
Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, Texas 78712
(Received 24 October 1995

Morphological measures for spatial patterns occuring as dissipative structures in systems driven far from
equilibrium are introduced. They characterize the geometry and topology of the patterns and are capable to
distinguish irregular structures with respect to the morphology. In particular, we analyze turbulent and regular
patterns(Turing patterns in chemical reaction-diffusion systems observed in a two-dimensional open gel
reactor with a chlorite-iodide-malonic acid reaction. Introducing the concept of level contours, the measures
turn out to be polynomials of low ordécubic and fourth degreén the grey-scale level of the images. Thus
the dependence on the experimental conditions is reflected only in a finite number of coefficients, which can be
used as order parameters for the morphology of patterns. We observe a symmetry breaking of the polynomials
when the type of the pattern changes from hexagons to turbulence or stripes. Therefore it is possible to describe
the pattern transitions quantitatively and it may be possible to classify them in a similar way like thermody-
namic phase transitions.

PACS numbg(s): 47.54:+r, 47.20.Hw, 05.70.Fh

I. INTRODUCTION phase transitions the reproducible transition of one pattern
type into another structure is not well understood. In recent
Irregular spatial-temporal patterns occur in many systemsheoretical studief12,13 the occurrence of turbulence, i.e.,
including chemical reaction-diffusion system$l—6], the instability of regular stationary patterns, was related to
Rayleigh-Benard convectidi7,8] electrohydrodynamic con- the occurrence of topological defects, in analogy to phase
vection[9], and surface waveg4.0,11. The usual approaches transitions in two-dimensional statistical systems. Further-
to describe and characterize such complex spatial structuresore, quantitative measures of disorder in regular patterns
are, for instance, autocorrelation functions or Fourier transwere defined14] and wavelet transforms are introduced to
formations[1]. Whereas for regular patterns these measureextract local amplitudes and phases of the pattern in order to
provide useful information as, for example, about characteranalyze defect§l5]. However, none of these approaches to
istic length scales and orientational order, they are incapablenalyze transitions of spatial patterns are focusing on their
of distinguishing irregular structures of different topology. changes in morphology or shapes of connected regions, in
Especially, they do not provide a description of the mor-particular, if many defects occur. The wavelet analysis of
phology of the patterns, i.e., of the content and shape ofwo-dimensional patterns is a difficult and nontrivial method
spatial structures. As an example, consider the three patterm¢hich is often numerically inefficient. Therefore it is useful
shown in Fig. 1. The obvious difference between these patto look for a quantitative characterization of the morphology
terns does not show up in their characteristic length scalesf spatial patterns which allows a direct and numerically ro-
but in the connectedness of white or black regions and in thieust way to analyze experimental data.
bending or curvature of the stripes. Other features related to In this paper we introduce the Minkowski functionals as
the content and shape of figures embedded in the pattermsorphological measures for patterns. They are well-known
are, for instance, the white area or the length of the boundin image analysi$16], mathematical morphologhl7], and
aries between black and white regions. Since photographiategral geometry18]. A prominent member of this family
reveal such detailed spatial information and since the differef morphological measures is the Euler characteristic de-
ence and the evolution of patterns are mostly recognized iscribing the topology, i.e., the connectivity of spatial pat-
the change of their shapes, it is important to define quantitaterns.
tive measures for such morphological characteristics. More- Although this approach is generally useful for dissipative
over, the failure of quantities used in the analysis of low-structures in nonequilibrium systems, we study in this paper
dimensional chaotic systems, such as generalized dimensiosslely concentration patterns obtained in a chemical reaction,
and Lyapunov exponents, to describe spatial-temporal patvhere the structures emerge out of the coupling of reaction
terns demands measures quantifying the essential morphdynamics and diffusion. The occurrence of stationary spatial
logical features like the connectedness of spatial regions angatterns in chemical reaction-diffusion systems was already
the curvature of their boundaries. predicted by Turing[19] and was extensively investigated
Apart from singular patterns extended phase-diagrams dafince then by theoretical and numerical studB3. The first
spatial structures were observed in the experiments merexperimental observation of stationary patterns in a gel reac-
tioned abovedsee Fig. 10 in Ref 1]). Unlike in equilibrium  tor was in 1990 3-5].
We consider Turing-type chemical spatial patterns in a
two-dimensional open spatial reactor with a chlorite-iodide-
*Permanent address: Bergische Univétsitduppertal, Fachbe- malonic acid reaction. The experiments are described in de-
reich Physik, D-42097 Wuppertal, Federal Republic of Germany. tail in Ref. [1]. The patterns form in a thin, quasi-two-
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FIG. 2. Three black-and-white images derived from the turbu-
FIG. 1. Three types of chemical patterns were observed in Refient pattern shown in Fig. (&) at three different grey levels
[1], a hexagonal statés), a lamellar stripe structuréb), and a =60, 127, and 180. The image is white, where the grey level in
turbulent patterric). The grey tones of the image correspond to thefig. 1(c) is higher tharp. One can see clearly the different topolo-
concentration of iodidesl . Each images consists of a 51280  gjes of the images. At the threshofo=127 the black and white
array of pixels with 256 grey levels. components are highly connected, whereaspat60 (p=180)
many disconnected bladkvhite) components occur.

dimensional disk filled with polyacrylamide gel WhiCh. change shape and orientation much faster than the usual

prevents convection but allows for the diffusion of Chem"moving of grain boundaries.

cals. Depending on the concentration of iodid€ the sys- In the next section we introduce for these spatial patterns

tem changes in color from yellow to blue which is measureqy,q ,ncent of level contours and define the Minkowski func-

in digitized grey-scale images. Above critical values of they o 5 a5 morphological measures before we describe in the
control parameters, i.e., temperature and reagent concentr,

. . . ﬁ]lowing section the results for the reported Turing patterns.
tions, spatial patterns spontaneously emerge from a spatially

homogen_eous system. Three different types of patterns are|| | EVEL CONTOURS AND MINKOWSKI MEASURES
reported in Ref[1], a hexagonal structure of isolated dots, a

lamellar stripe structure broken up into domains of different We show in Fig. 1 examples of the three different types of
orientations, and a structure of turbulent stripes, whichchemical patterns observed in REE], a hexagonal stat@),
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FIG. 3. A black-and-white digital image consists of a square
lattice where each square has exactly four nearest and next-nearest
neighbors. By counting the number of white squares one obtains for
the area fractiorv:i—g. The boundary Iengthx;:%1 between the
black and white regions is given by the number of sides joined by a
black and white pixel. The number of connected black and white
components in both cases oné{f)=N{"=1), since the surround-
ing white region does conventionally not count. The Euler charac-
teristic is therefore zeroy(=0), a result which can also be obtained
by counting the local curvature variables located at the boundaries.

a lamellar stripe structur@), and a turbulent patter(t). The o0
grey tones of the image correspond to the amount of the oo
oxidized state in the system, i.e., inversely proportional to
the concentration of iodide;T. Each image consists of a

0.001

512x 480 array of pixels with 256 grey levels. B
In order to get detailed information about the spatial -o00t
structure we want to look at the system at each grey level, o0z

i.e., we consider the so-called level contours. Thus we intro-

duce a threshold variable=0, . . .,255 andreset the grey

value at each pixel to either white or black depending on (C;""“M 5 00

whether the original value is larger or lower thanrespec-

tively. In this way we get 256 black-and-white images out of o~ ) 1.0 \tinkowski measures i@ the area fractiom, (b)

(r)i\r;g dg]r‘?g;e;/r?é '{E?gﬁém :_;‘:196.1933 Véﬁosvt/]r?\,\ilnthl:r%?c;fatp?rr:e de'the boundary lengtk, and(c) the Euler characteristig, are shown
L for three typical patterns, a hexagonal stétdl lines), a lamellar

levels p=60, 127, and 180. The qualitative features of the ypice! P J " )

: - ) - stripe structurgdasheg, and a turbulent pattertdash-dotted (a)
images varies drastically when the threshold parametier  pe area of the white region, i.e., the number of pixels with thresh-

changed. _ o ) __old larger tharp, decreases monotonously from 1 to 0. In contrast
Although the pictures in Fig. 2 are obviously descriptionsio the stripe and turbulent pattern, which both show a nearly point-
of continuous patterns, i.e., describable by smooth boundargymmetric behavior with respect fo=127 andv=0.5, the hex-
lines between black and white areas, they actually consist afgonal structure favors black areas. This can already be seen in the
a square lattice of pixels shown in Fig. 3. Thus each pixel hagrey-scale image shown in Fig(c). (b) The boundary length tends
exactly four nearest neighbor pixels along the sides of theo zero for a nearly whited=0) and black p=255) image and
unit squares of the lattice and also four next-nearest neigheaches a maximum inbetween. Again the hexagonal pattern exhib-
bors connecting the diagonals of the unit squares. In order tits an asymmetry ip with a maximum of the boundary length at
avoid a somewhat arbitrary definition of continuous bound-smaller values of the threshojd than for the stripe and turbulent
ary lines on a large scale we want to introduce geometrigtructure with a maximum near= 127.(c) The Euler characteristic
measures right on the well-defined pixel level, which never-x describes the topological structure of the pattern. It is negative
theless describe the morphological differences of these digpositive if many disconnected bladkvhite) components dominate
crete images in a continuous way. For this purpose we use image. A vanls_hlng Euler characteristic |nd|cate§ a highly con-
Minkowski measures, well known in digital picture analysis negted structure wlth gqual amount of black and white components
[16] and integral geometry17] for the characterization of @S it can be seen in Fig. 2.
black-and-white discrete images. Integral geometry general-
izes curvature integrals over smooth surfaces to the case tiie natural choice for the description of the geometry, or
surfaces with edges and corners. In the example of a twanorphology, of digital pictures. These measures have already
dimensional digital picture such irregularities arise from thebeen applied in other physical systems where spatial patterns
corners of the pixels, which make the Minkowski measuregplay an important role, e.g., for the description of micro-

-0003
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emulsiong 21,22, the large scale distribution of galaxies in negative mean curvature counting curvatures at boundaries
the Universd 23], and percolation in porous media4]. negative, if the boundary curve is bended towards the black
One obvious quantity describing the morphological differ-region as described above. On the other end at high thresh-
ences of the images shown in Fig. 2 is the white area, i.e., thelds one observes in Fig(@ an inverted image with many
number of pixelsN, with a grey level larger thap. Nor- disconnected white components, thus a positive mean curva-
malized by the total number of pixéll the area fraction ture, and therefore a positive Euler characteristic. In be-
v(p)=N,/N decreases from 1 to 0 by increasing the threshiween, at intermediate thresholdshighly connected and in-
old, which is shown in Fig. @) for three typical patterns tertwined black and white stripes occur, where the mean
reported by Ref[1], i.e., for a hexagonal statéull lines), a curvature is almost zero and the number of black and white
lamellar stripe structurédashegl and a turbulent pattern components is balanced. .Th.e areathe boundafy Iength
(dashed-dotted s, and the Euler characteristjg are called the Minkowski

Another morphological quantity shown in Fig(b} is the measures for two-dimensional patterns.

length of the boundary line(p) =B,/N between black and
white regions measured as the number of pairs of neighbored

black and white pixel8, normalized by the total number of In order to apply the Minkowski measures to Turing pat-

pixels N. As expected, the boundary lengthstarts at zero terns generated by a diffusion-reaction system we calculate

for the totally white image ap=0, increases, reaches a for each thresholg and each pattern reported in REf] the

maximum value where the black and white areas are nearlyhite areav, the lengths of the boundaries, and the integral

equal, decreases, and finally ends at zero again for the corof the curvature along the boundaries, i.e., the Euler charac-

plete black image gb=255. teristic y. Especially we analyzed each pattern indicated by
The third quantity shown in Fig.(d) is the so-called Eu- the “phase-diagram” in Fig. 10 of Refl] to study transi-

ler characteristigy(p) = (N{"’ = N{™)/N, i.e., the difference tions of patterns. _ _

of the number of blackN(pb) and white NE,W) components Surprisingly, it 'tl'.lrI’IS out that there are simple combina-

normalized byN. A black or white component is defined as ions of the quantities (p), s(p), andx(p), namely,

a region of connected black or white pixels, respectively. _ _

Thereby a black pixel is connected to another black one iff Py(p)=tanh *(2v — 1),

one can find a path of black pixels going in each step from

one pixel t_o one of its four negrest neighb.or.s.. Due to t_he p(p)= S —4s cosRlp,(p)], 1)

square-lattice structure of the pixels the definition for white v(l-v)

components is slightly different. A white pixel is connected

to another white one iff one can find a path of white pixelsand

going in each step from one pixel to one of its four nearest

neighbors or to one of its four next-nearest neighbors. Thus

diagonal steps are allowed. We want to note that for the

pictures considered here this difference plays no role, since

always a path could be found avoiding diagonal steps. such that the experimental dateonsidered as functions of
In contrast to the surface areaand the line lengtfs the  the thresholdp, which is normalized to the intervalk-1,1]

Euler characteristigy describes the pattern in a purely topo- for conveniencemay be describe quite well by polynomials

logical way, i.e., without refering to any kind of metric. It of very low degree, i.e.,

measures the connectivity of the black and white regions.

Ill. RESULTS FOR TURING PATTERNS

NORES

Despite this global characterization of the pattern the Euler Po(p) =Py +pYp+pl? 2+ pl¥p?,
characteristic can be calculated in a local way. Consider, for
example, one of the four corners of a black pixel and its three ps(p)~p P+ pMp+pPp2+pPpd+pPpt, (2

neighboring pixels joining at this corner as it is shown in Fig.

3. We design at each corner of a black pixel the valueand

—1, 0, or+1 depending on the “local curvature.” According

to Fig. 3 the curvature value is 1 iff both of the two nearest P (p)=~p L +pMp+pPp?+pPpd,

neighbors joining at the corner are white, itdidl iff both of

the two nearest neighbors joining at the corner are black anathich approximate the functions,(p), p,(p), andp,(p)

the third, next-nearest one is white, and it is O for all othervery accurate. This holds for all the patterns reported in Ref.
cases. The sum of all these curvature values dividedNby 4 [1]. That is, these spatial combinationsugfs, andy may be
equals the Euler characteristic It can be shown that this described by a few parameters for different patterns and are
definition of y possesses a continuum limit for smooth thus in this sense universal in character.

boundaries, which is equal to the integral of the curvature In Fig. 5 we show for the same patterns used for Fig. 4,
along the boundary lines. Thug's describes the mean cur- i.e., for a hexagonal statéull lines), a lamellar stripe struc-
vature of the boundary between black and white domainedure (dashegl and a turbulent patterfdashed-dotted the

As one can see in Fig.(@ at low thresholds many discon- three quantitiega) p,(p), (b) ps(p), and(c) p,(p) as func-
nected black components dominate the structure of the imagens of the threshol@. The thin full line in Fig. 5 is the best
yielding a negative Euler characteristic in accordance witHit to the functions, which can hardly be distinguished from
the functiony shown in Fig. 4c). This measure indicates a the experimental data.
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The coefficients for the polynomials shown in Fig. 5 are
given in Table | to illustrate typical values. It was not pos-
sible to fit the data curves with polynomials of lower orders

than the one used in the ansatz. Higher orders were not nec- 20 \\\“{n‘{
essary to improve the accuracy. The coefficiems 1o D
(i=1,...,4 u=v,sx) depend on the control parameters T 00
as, for instance, the concentration of malonic acid or the -1o .
temperature, but they are reproducible by unchanged experi- -20 “‘\
mental conditions. Moreover, the fits are not only satisfying -30
with sufficient accuracy at intermediate thresholds near zero 40
but also at the very ends, where only few isolated compo- @ o3 I 03 1o
nents remain in the images.
Whereas the functions seems to be symmetric in the 19
thresholdp for stripe and turbulent patterns, the functions 17 .
display a dominance of black regions for hexagonal patterns. 15 ]
The symmetry observed in Fig. 5 is reflected by the coeffi- . \ /
cientsp!®, p{?, pt, p®, p?, andp!®, which are for = P
stripes and turbulent patterns, but not for the hexagons, at ’ \ —/,//'
least a magnitude smaller than the dominant terms. i B g
Nevertheless for the hexagon patterns the values of the 07 \\ """"" e 1

S eaa

functions at the very ends, at=1 andp=—1, show the
same symmetric relations, i.e.,p,(—1)=-p,(1),
ps(—1)=~ps(1), andp,(—1)~—p,(1). Thus the coeffi-
cients of the polynomials obey approximatgl{f’~ —p®,
pH~—p¥, andp{V’~—p?, as one can see in Table .
Moreover, we found that the valyg,(—1)=—-p,(1)~2.5

is not influenced by control parameters like the malonic acid
concentratior(see Fig. 5.

The first result of this integral geometric method for pat-
tern analysis is that the area of the white domains as a
function of the thresholg is given mainly by a hyperbolic
tangent profile and that the boundary lengtis proportional
to the productw(1-v), i.e., to the product of the areas of
black and white components, respectively. The particular
functional forms in Eq(1) are chosen because of the occur- FIG. 5. The same patterns as in Fig. 4, a hexagonal éfaite
rence of these functions in many fields of physics. But thdines), a lamellar stripe structurédashed, and a turbulent pattern
connection to the reaction-diffusion system considered herélash-dottel] are used to illustrate the functional form of the
is not clear and needs to be investigated. Although we findlinkowski measures, i.e., of (@ the area fraction
these functional forms for all of the chemical patterns re-P,(p)= tanh *(2v—1), (b) the boundary length ps(p)
ported in Ref[1], we could not see them in patterns gener-=S/v(1—v), and (c) the Euler characteristip,(p)=x/s. The
ated by other chemical reactions or by computer simulationiines are best fits to the experimental déttéck dots using cubic

The second, even more important result is that the deper‘?‘-nd fourth-degree polynomials. The accuracy is remarkable and

dence on the experimental conditions like the concentratioffould not be achieved with polynomials of lower orders. The asym-
of malonic acid is reflected only in a finite number of coef- metry of the measures for the hexagonal pattern, which can be seen
in Fig. 4, are reflected by quadratic terms in the polynomials.

ficientsp(}). The functional form of the measures s, and

x remains the same, i.e., itis given always by polynomials otontrast, for the hexagons these terms cannot be neglected.
low order. Especially the quadratic term yields an asymmetry in the
The third and most striking result can be seen when th@unctional form of the thresholg. The similarity to the sym-
dependence of the coefficients on the control parameters iﬂetry breaking mechanism at thermodynamic phase transi-
considered. We show, for instance, in Fig. 6 for seven differtijons is obvious, although the physical connection is not
ent concentrations [H,SO,]5 (mM) at constant made yet. The transition seems to be continuous with
[CIO, ]5=20 mM the experimental curve,(p) and its best  steadily decreasing cubic and quadratic terms in the polyno-
fit using a cubic polynomial. The other control parametersmial. They remain almost zero for the turbulent patterns de-
were fixed at the values given for Fig. 10 of REf]. The  spite the change of the control parameters. The inset shows
shape of the polynomiap,(p) indicates a transition from the coefficienp of the polynomialp (p), i.e., its value at
hexagonal point patterrull lines at[H,SO,]5=17, 28, 45, =0, as a function of the concentratipH,S0, ]2 (MM). At
and 100(mM)) to turbulent structureg¢dash-dotted lines at each concentration six different patterns were analyzed. This
[H, SO,15=2, 5, 10(mM)). For all turbulent patterns the measure reflects the asymmetry in the thresholdf the
polynomial is nearly a straight line with no constant, qua-polynomials and is therefore almost zero as long as the pat-
dratic, or cubic term and shows therefore a zerpa®. In  tern is turbulent and it increases when hexagonal structures
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TABLE I. Typical values for the coefficientpif) of the polynomialsp,(p) for hexagonal, stripe, and
turbulent patterns. Coefficients which are at least a magnitude smaller than the dominant terms are set in
parentheses to illustrate the apparent symmetry of the polynomials.

Pattern typeuw pﬁ?) pﬁ}) Dﬁf) pf) pEf')
Hexagonsp —-0.45 -1.59 0.397 -0.82

Hexagonss 0.83 0.14 0.43 —0.18 0.36
Hexagonsy 0.024 0.056 —0.025 0.033

Stripes,v (0.0096 -1.39 (0.030 —-1.09

Stripes,s 0.55 (—=0.02) 0.599 (0.039 (—0.062
Stripes,y (—0.00020 0.024 (—0.000013 0.031

Turbulent,v (—0.063 —1.93 (0.058 —0.536

Turbulent,s 0.697 (0.019 0.554 =0.9 (—-0.023
Turbulent, y (0.0026 0.063 (—0.0039 (0.0044

emerge. We find a pattern transition from turbulent stripes tshape of the curve, it remains zero for stripe patterns ana-
hexagons at a concentration of 17 mM compared with 49yzed here.
mM indicated by the phase diagram in Fig. 10 of Réi. The insets show the coefficiens” and p{¥), respec-

In Fig. 7 we show for five different concentrations of tively, as a function of the malonic acid concentration
malonic acid CH Z(COOH)Z]O (mM) the experimental curve [CHz(COOH)z]o (mM). Again at each concentration six dif-
p,(p) and its best fit using a cubic polynomial. The otherferent patterns were analyzed. The deviation of the values at
control parameters were held fixed at the values given fo12 mM from the ones at 11 mM might result from an insuf-

Fig. 7 of Ref.[1]. The shape of the polynomigl (p) reflects
clearly the transition from stripe pattern@ull lines at

[CH,(COOH),] 5=

(dash-dotted lines a[CHZ(COOH)Z]g‘ 8,9,10(mM)). For

ficient relaxation time for the pattern to relax into its final
state[25]. However, we observe a symmetry breaking in the

=11,12 (mM)) to turbulent structures polynomial when the type of pattern changes. The discon-

tinuous pattern transition with a sharp jump from a turbulent

all turbulent patterns the polynomial is nearly a straight line State to stripes occurs at a concentration of 10 mM in agree-
in particular without cubic term. But for the stripes the cubic ment with the quantities shown in Fig. 8 of Rét].
cooefficient is not small compared to the linear term. In con-

trast to the hexagons, where the quadratic term dominates the IV. CONCLUSION

Relating to our three main findings we want to focus on
three questions.
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FIG. 6. The polynomialp,(p) indicates a transition from p

hexagonal point patterngfull lines) to turbulent structures

(dash- dotteli as a function of [HZSO4]0 (mM) at constant FIG. 7. The transition from stripe pattertgashedglto turbulent
[CIO, ]5=20 mM. The other control parameters were held fixed atstructures(dash-dotteyl exhibits a jump in the cubic term in the
the values given for Fig. 10 of Refl]. The transition seems to be polynomial pX(p) as a function of malonic acid concentration
continuous with decreasing cubic and quadratic terms in the ponECHz(COOH)Z]O The other control parameters were held fixed at
nomial. They remain zero for the turbulent patterns. As in Fig. 5,the values given for Fig. 7 in Reffl]. As in Fig. 5 the lines are best
the lines are best fits to the experimental datack dotg. The inset  fits to the experimental datdlack dot3. The insets show the co-
shows the coefficierp!”) of the polynomlaIpX(p) i.e., its value at efficientsp'® andp{", respectively, as a function of malonic acid
p=0, as a function of the concentrat|{>HZSO4]0 (mM). We find a concentratior‘{CHz(COOH)z]E. As in Fig. 6, the cubic term is
pattern transition from turbulent stripes to hexagons at a concentraero for the patterns in the turbulent phase but nonzero for the
tion of 17 mM compared with 45 mM indicated by the phase dia-stripes. In contrast to the hexagon patterns the quadratic term re-
gram in Fig. 10 of Ref[1]. mains small.
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(1) Why is the white area essentially a hyperbolic tangentheory of pattern transitions in analogy to the Landau theory
profile in the thresholdp? Despite the occurrence of this for thermodynamic phase transitions?
profile in such diverse fields as thermal statistics of a para- The primary conclusion is that Minkowski measures, in
magnet, the width of an fluid interface, or the mean fieldparticular the Euler characteristic, describe quantitatively ir-
solution of a¢*-field theory, the connection to the reaction- regular spatial patterns and their transitions in a morphologi-
diffusion system is not clear yet. cal way and might be capable to classify pattern transitions
(2) Why are the measuregs,(p), ps(p), andp,(p) finite  in a similar way like thermodynamic phase transitions.
order polynomials in the threshop® They do not need to be
that. However, in many models for statistical geometries like
the Boolean grain model, similar polynomial behaviors of ACKNOWLEDGMENTS
the Minkowski functional do occuf24]. But what is the It is a pleasure to thank H. Swinney and Q. Ouyang for
underlying statistical model in this case, if there is one?  providing the data and the friendly support at the Center for
(3) Why is there a symmetry breaking in the mean curva-Nonlinear Dynamics. | would also like to acknowledge fruit-
ture, i.e., in the Euler characteristic as a measure for théul discussions with M. Marder. This work was financially
topology of patterns? Is it possible to formulate a mesoscopisupported by the Deutsche Forschungsgemeins¢b&fs).
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